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Design optimization using the Class-Shape-Transformation  (CST) method suggested by 
Kulfan has been applied to 2-D airfoils  and a 3-D wing.  The CST method applies  shape 
functions  to  an  underlying  transformation  that  mimics  essential  geometric  features.  As 
applied to airfoils, this transformation insures a round leading edge and sharp trailing edge 
as  well  as  smooth geometry  and the potential  to reduce  the  number  of  necessary  design 
variables for optimization. This  study examines practical  application of CST to transonic 
optimization using Tranair++.  Among the issues  examined is an evaluation of how many 
design variables are required and how CST should be applied to optimize a given geometry. 
Constraint  implementation  will  also  be  explored  to  evaluate  how  well  key  aerodynamic 
features may be imposed in a CST framework. These issues will be explored first in 2D and 
then on a 3D wing with CST modeling in both chord-wise and span-wise directions.

I. Introduction
Aerodynamic  design optimization  requires  intelligent  geometric  modeling  to decrease  the number  of  design 

variables and subsequent computational cost. Traditional geometric modeling has typically required a large number 
of design variables to model key aerodynamic features such as the round leading edge of an airfoil.  The Class-
Shape-Transformation (CST) method invented by Kulfan (Ref 1 & 2)  promises  to reduce the number of design 
variables necessary to produce robust optimized designs. It also promises several other benefits including insured 
smoothness,  intuitive terms and robustness.  This study examines  practical  application of CST modeling towards 
transonic optimization. We hope to determine the strengths and weaknesses and evaluate the relative merit of CST 
modeling for transonic optimization.

The objectives of this study are:
1) Demonstration of CST optimization on a 2D transonic airfoil.
2) Evaluation of the optimum number of design variables in a CST framework.
3) Constraint implementation.
4) Robustness of CST implementation.
5) Multi-point compared with single-point CST optimization.
6) 3D optimization of a wing alone geometry.

II. Method Description
A. CST Geometry Framework

The Class-Shape-Transformation  (CST)  method was invented  by  Kulfan  (Ref  1 & 2)  as  a  means  to model 
generalized geometry. The method employs an underlying transformation to mimic essential geometric features and 
shape functions that build off that transformation to model specific geometry. The transformation is based on ‘Class’ 
functions formulated to define fundamental groups of geometric features such as an airfoils with a round leading 
edge and a sharp trailing edge and ‘Shape’ functions that specify unique geometric details within the fundamental 
‘Class’ function. The general CST modeling for an airfoil is composed as follows:
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Bernstein polynomials were selected for the shape function because they  essentially define a composite set of 
smooth airfoils. The “partition of unity” characteristic of Bernstein polynomials together with the analytic nature of 
the shape function insures that this process captures the entire design space of smooth airfoils. It is recognized that 
alternate shape functions may be preferable and the selection of Bernstein polynomials was chosen as a starting 
point.

B. Computational and Optimization Method
Tranair++ is a full potential solver with coupled boundary layer and Cartesian grid adaptation. It was developed 

by Forrester Johnson and others at Boeing and is documented in References 3-4. Additional information is available 
on the Calmar Research Corporation web site (Reference 5) where is is licensed for commercial resale. The design 
optimization  features  in Tranair++  allow constrained  multi-point  design and  have  been used on several  Boeing 
aircraft.  Tranair++  allows  user-defined  movement,  constraint  and  objective  functions  including  inequality 
constraints. Figure 1 shows Mach contours on an RAE2822 solution including the grid adaptation.

Figure 1. Tranair Mach Contours around RAE 2822 Airfoil with and without Grid

III. 2D Optimization
A. Design Modes Using CST 

Tranair++ utilizes user defined design modes to move the geometry and optimize the design. This allows the 
aircraft  designer  complete  control  over  design  movement  while  reducing  the  number  of  design  variables.  CST 
optimization may be implemented either as the perturbation to an existing geometry or directly in 2D or 3D space. 
Direct CST optimization utilizes the CST shape functions as design variables so that every resulting airfoil is a CST 
airfoil. The perturbation method optimizes the sum of an existing geometry and a CST shape function optimization 
so that each delta will be defined by a CST airfoil. Since every airfoil may be mathematically described as a CST 
airfoil, these two methods are theoretically equivalent, although the number of design variables needed may not be 
practical. 
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A hybrid method combining the two is also possible. The addition of another design variable (λ) to the perturbation 
formula enables the baseline geometry to be scaled and potentially zeroed out if the new design variable is set to 
zero as given in the formula below. This method will likely provide additional  robustness since it can reduce or 
eliminate adverse characteristics in the baseline geometry while providing the benefit of localizing the optimization.

Perturbation Movement: CSTNEW ζζζ ∆+=
Direct Movement: CSTNEW ζζ =
Hybrid Movement: CSTNEW ζλζζ ∆+=

The strengths and weaknesses of direct vs perturbation formulation are outlined in Table 1. The benefit of using 
a direct formulation is that resulting geometry will necessarily be smooth and that strategic terms may be imposed 
directly in movement or constraint routines as shape function coefficients. One disadvantage is that source geometry 
must be pre-fit to determine CST coefficients that are then sent to the optimization routine as starting points. The 
advantage  of  using  perturbation  formulation  is  that  the  source  airfoil  may  be  input  directly  with  generalized 
perturbations and that these perturbations may be used for similar airfoils and topologies. The hybrid formulation 
has the advantages of both direct and perturbation formulations and the disadvantage of an additional extra design 
variable.

Item Direct Formulation Perturbation Formulation
LE  radius  and 
TE angle

Directly  formulated  from  design 
variables

Must  extract  base  geometry  values  to 
specify LE radius and TE angles

Smoothness Always Smooth Base geometry must be smooth
Thickness Constraint is a set of linear equations Constraint is a set of linear equations
Initial Geometry CST coefficients  are  extracted  from 

source airfoil prior to optimization. 
Geometry  is  input  directly  as  discrete 
points.

Table1. Strengths and Weakness of Direct vs Perturbation Method

Initial  comparisons  shown in Figure 2 reveal 
minor differences between perturbation and direct 
CST implementations.  Both optimizations  reduce 
the profile drag and virtually  eliminate the wave 
drag.  The  virtual  elimination  of  wave  drag  is 
expected  for  the  single-point-optimization  used 
for  initial  assessments.  The  optimization  was 
performed  on  the  RAE  2822  airfoil  with 
constrained Mach,  lift  and thickness  distribution. 
Since both methods are theoretically equivalent it 
isn't  surprising  that  they  are  nearly  identical  at 
first  glance.  It's  worth  noting  that  the  camber 
optimization  drag  benefit  is  within  ½  count  of 
D.Young's  Tranair  optimization  results  on  the 
same airfoil as reported in Reference 5.

Figure 2. Comparison of CST Optimization Methods
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B. Bernstein Polynomial Order

A sensitivity study was conducted to determine 
the effect of the Bernstein Polynomial Order on the 
optimization results. This study was conducted on 
the RAE 2822 airfoil at Mach 0.725 and Reynolds 
number  6.5M  with  both  perturbation  and  direct 
CST movement.  Lift was constrained to 0.73 and 
thickness distribution was constrained to match the 
RAE 2822. Results in Figure 3 show that minimum 
drag  is  generally  achieved  with  6  Bernstein 
polynomials  and  is  constant  within  about  1  drag 
count for higher order Bernstein Polynomials. It is 
encouraging  that  the  optimization  asymptotes 
quickly  and  is  relatively  independent  of  the CST 
implementation. 

Figure 3. Bernstein Order Sensitivity

Baseline and optimized geometries 
are compared in Figure 4. Constraints 
limited  optimization  to  camber 
modifications  as  shown in the figure. 
The resulting airfoil is shown to have 
more aft loading with a sharper leading 
edge  peak  and  a  mild  double  shock. 
These  characteristics  are the result  of 
the  single-point  optimization  used  in 
the  initial  studies.  Figure  5  shows  a 
CST  multi-point  optimization  that 
removes the double shock and leading 
edge peak observed in the single-point 
optimization.  As  is  typical  for  multi-
point  optimization,  the  multi-point 
optimization retains 96% of the single-
point optimization drag reduction.

Figure 4. Single-Point Optimization Using CST
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Figure 5. Multi-Point Optimization Pressure Architecture

Figure 6. Effect of Bernstein Order on Single-Point Optimization Results

Figure  6  shows  pressure  architectures  for  3  orders  of  Bernstein  polynomial  resulting  from  single-point 
optimization using direct CST implementation. The figure shows a slight reduction in the double shock and slight 
increase in aft loading as the Bernstein polynomial order is increased from 6 to 10. This illustrates the well-behaved 
nature of the CST formulation.

C. Geometry Constraints with CST
Constraint implementation in a CST framework offers several opportunities to impose constraints directly on the 

design  variables.  Several  constraints  may be  described  analytically  with  the  potential  advantage  of  simplifying 
optimization. Three constraints will be examined: leading edge radius, trailing edge angle, and spar thickness. The 
first two were used in our routines while the last was easier to implement with Tranair++'s constraints routine which 
allows inequality constraints on any variable that can be described. 

1) Leading edge curvature  (from Kulfan):
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2) Trailing edge boat-tail angle (  (from Kulfan):

3) Spar  thickness:   Spar  thickness  constraints  limit  amplitudes  of  the  system  of  Bernstein  polynomial 
coefficients.  For  most  applications  where  the  Bernstein  polynomial  order  is  6  or  higher  and  the  spar 
thickness is constrained at 2 chordwise locations, spar thickness constraints limit the system of equations 
and do not specify a single coefficient. The thickness constraint is given by the formula below:

=1− Si Ai
U
−A i

L


S i=n! /i !n−i! 1−

A simplified means of achieving a similar result is to scale the design variables by the ratio of target/current 
thickness times the shape factor as given by the formula below:

=o thicktarget / thickcurrent S i

Where S i is the shape function at the spar location being constrained.

Tranair++  features  automatic  and  user  defined  constraint  functions,  and  it  turns  out  it  is  much  easier  to 
implement  thickness  and curvature  constraints  using  the Tranair++ functionality  than defining  special  functions 
derived  from  CST  coefficients.  This  Tranair++  functionality  is  utilized  for  applying  curvature  and  thickness 
constraints for the remainder of this study.

D. Robustness
Results  shown in Figures  2-3 illustrate  that  optimized performance  is  generally  insensitive  to the  Bernstein 

polynomial order or the implementation method, and all cases analyzed converged without great difficulty. In the 
course of the investigation, several issues were identified relating to the robustness of CST optimization.

1) The leading edge must be extracted precisely. Many CAD surfaces, such as the DLR-F6 wing, identify a 
leading edge that isn't precise enough for CST optimization. The wing should be discretized to place a point 
precisely on the leading edge for each airfoil across the span or risk the geometry crossing over itself for 
moderately blunt airfoils.

2) High  order  Bernstein  polynomials  are  limited  by  numerical  limitations.  We observed  round-off  errors 
leading  to  failures  for  Bernstein  polynomials  greater  than  14  orders  magnitude.  This  isn't  surprising 
considering the factorial computations needed to generate the Bernstein basis functions. Results indicate 
this is an insignificant limitation since lower order Bernstein polynomials appear to work just fine.

3) Higher  order  Bernstein  polynomials  converged  with  more  difficulty  than  lower  order  polynomial 
optimizations. Results indicate convergence issues were related to the excitement of the single Bernstein 
polynomial near the base of the shock. The optimizer allowed a small bump in this region to pull the shock 
aft  a little,  and the higher  order  Bernstein polynomials  accentuated the effect.  Multi-point  optimization 
would likely reduce or eliminate this problem.

4) Direct  movement  implementation  had  more  convergence  issues  than perturbation  movement.  This  was 
likely caused by the step size of the design variables allowed by the optimizer. Initial computations made 
with the absolute movement implementation allowed for larger design variable step sizes relative to the 
perturbation implementation due to user input. Reduction of the allowable design variable step size allowed 
the direct movement implementation to converge for all cases analyzed.  More discipline is required to set 
the design variable range with the direct method relative to the perturbation method to maintain reasonable 
design variable step sizes.
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IV. 3D Optimization
A. Geometry

Our initial assessment of 3D optimization utilized the wing from the DLR-F6 configuration analyzed in the Drag 
Prediction  Workshops  and  detailed  in  Reference  6.  We selected this  wing  since  it  is  an  industry  standard  and 
contained a planform break.

B. Optimization Method
Bernstein polynomials  were used in both chord and spanwise  directions.  CST movement  was proscribed  as 

perturbations to the existing geometry in both chord and spanwise directions. Geometry movement was restricted 
normal to the chord plane. Figures 7-8 show results for 6 Bernstein polynomials in the chordwise direction and 5 in 
the spanwise direction. Constraints were imposed on the lift coefficient, spar thickness and boundary layer health.

C. Optimization Results
The  optimization  of  the  wing  resulted  in  a  drag 

reduction  of  20  counts  as  shown  in  Figure  7.  It's 
interesting to note that  the optimizer  strengthened the 
weak shock to gain an induced drag benefit. In this case 
the trade was advantageous to increase the wave drag 
slightly to improve the induced drag. Figure 8a and 8b 
show  pressure  contours  for  this  case.  The  smooth 
isobars in the optimized case indicate the result should 
be  relatively  independent  of  the  order  of  Bernstein 
polynomials used to model spanwise variations. This is 
a single-point optimization result.

Figure 7. Breakdown of drag for 3D Optimization

Figure 8a. Baseline DLR-F6 Wing                     Figure 8b. Optimized DLR-F6 Wing
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V. Summary and Conclusions
The CST method has been applied to 2D and 3D transonic optimization problems with success. Both direct and 

perturbation  implementations  resulted  in  consistent  results  and  were  generally  insensitive  to  the  Bernstein 
polynomial  order  as  long  as  it  was  6  or  higher.  2D  optimization  results  were  consistent  with  conventional 
optimization used by Young in Reference 4. Several robustness issues were identified and resolved. In each case 
studied,  the  CST method  performed  as  anticipated.  Based  on  the  results  of  this  study,  we recommend  further 
investigation  into  CST  optimization  including  the  use  of  non-Bernstein  basis  functions  targeted  to  key  airfoil 
characteristics.
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